and six-membered rings, the dimensions of the cation are virtually identical with those found in its $\left[\mathrm{MCl}_{4}\right]^{--}$ salts ($\mathrm{M}=\mathrm{Fe}, \mathrm{Hg}$) (Rusholme, 1970). As with other 1,2dithiolium cations, bond lengths and bond angles are indicative of substantial cyclic delocalization in the five-membered ring system.

We are grateful to the Science Research Council for support of these studies.

References

Balt, S. (1967). Rec. Trav. Chem. Pays-Bas, 86, 1025-1033.
Bird, B. D. \& Day, P. (1968). J. Chim. Phys. 49, 392-403. Burbridge, C. D. \& Goodgame, D. M. L. (1968). J. Chem. Soc. (A), pp. 1074-1079.
Busing, W. R. \& Levy, H. A. (1967). Acta Cryst. 14, 598602.

Freeman, H. C., Milburn, G. H. W., Nockolds, C. E., Hemmerich, P. \& Knauer, K. H. (1969). Chem. Commun. pp. 55-56.
Freeman, H. C., Milburn, G. H. W., Nockolds, C. E., Mason, R., Robertson, G. B. \& Rusholme, G. A. (1974). Acta Cryst. B30, 886-894.
Gill, N. S. (1961). J. Chem. Soc. pp. 3512-3515.
Heath, G. A., Martin, R. L. \& Stewart, I. M. (1969a). Chem. Commun. pp. 54-55.
Heath, G. A., Martin, R. L. \& Stewart, I. M. (1969b). Aust. J. Chem. 22, 83-95.

Hordvik, A. (1965). Acta Chem. Scand. 19, 1039-1044.
Hordvik, A. \& Joys, S. (1965). Acta Chem. Scand. 19, 1539-1548.
Hordvik, A. \& Kıøge, H. M. (1965). Acta Chem. Scand. 19, 935-946.
Hordvik, A. \& Sletten, E. (1966a). Acta Chem. Scand. 20, 1874-1884.
Hordvik, A. \& Sletten, E. (1966b). Acta Chem. Scand. 20, 1907-1922.
International Tables for X-ray Crystallography (1962). Vol. III, p. 202. Birmingham: Kynoch Press.
Jacobson, R. A., Wunderlich, J. A. \& Lipscomb, W. N. (1961). Acta Cryst. 14, 598-563.

Kistenmacher, T. J. \& Stucky, G. D. (1968). Inorg. Chem. 7, 2150-2155.
Mason, R., McKenzie, E. D., Robertson, G. B. \& Rusholme, G. A. (1968). Chem. Commun. pp. 1673-1674.
Mason, R., Robertson, G. B. \& Rusholme, G. A. (1974). Acta Cryst. B30, 894-905.
Pauling, L. (1960). The Nature of the Chemical Bond, 2nd ed., p. 260. Ithaca: Cornell Univ. Press.
Quagliano, J. V., Banerjee, A. K., Goedken, V. L. \& Vallarino, L. M. (1970). J. Amer. Chem. Soc. 92, 482488.

Rusholme, G. A. (1970). Ph. D. Thesis, Univ. of Sheffield.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Trinh-Toan \& Dahl, L. F. (1971). J. Amer. Chem. Soc. 93, 2654-2666 (and references therein).

Acta Cryst. (1974). B30, 910

The Crystal Structures of 2,2'-Bipyridine. $2 \mathbf{I C l}$ and $2,2^{\prime}$-Bipyridine. $2 \mathbf{I B r}$

By Stuart Soled and Gene B. Carpenter
Metcalf Chemical Laboratories, Brown University, Providence, Rhode Island 02912, U.S.A.

(Received 17 August 1973; accepted 26 November 1973)

Abstract

The crystal structures of $2,2^{\prime}$-bipyridine. 2 ICl and $2,2^{\prime}$-bipyridine. 2 IBr have been determined from three-dimensional diffractometer data to give $R=2.9 \%$ and 4.0% respectively. $2,2^{\prime}$-Bipyridine. 2 ICl crysstallizes in $P 2_{1} / n$ with $a=11 \cdot 833$ (7), $b=12 \cdot 427$ (7), $c=10 \cdot 163$ (5) \AA, and $\beta=101 \cdot 76$ (3) ${ }^{\circ} ; Z=4.2,2^{\prime}$ Bipyridine. 2IBr crystallizes in Pnna, with $a=12.971$ (4), $b=11.163$ (4), $c=10.387$ (4) $\AA ; Z=4$. In the chlorine compound the dihedral angle between the pyridine rings is 88.6°, in the bromine compound 52.9°. A short intramolecular approach of the two iodine atoms in the IBr adduct ($4.09 \AA$) is observed.

Introduction

Several significant differences in the chemical structure of $2,2^{\prime}$-bipyridine. 2 ICl and $2,2^{\prime}$-bipyridine .2 IBr (hereinafter referred to as bipy. 2 ICl and bipy. 2 IBr) were inferred from a recent Mössbauer spectroscopic study of ${ }^{129}$ I (Wynter, Hill, Bledsoe, Shenoy \& Ruby, 1969). For example, bipy. 2 ICl has more π bonding than the IBr adduct. Furthermore, from the larger asymmetry parameter of bipy. 2 IBr , the authors suggested that bipy. 2 ICl exists in a trans conformation in the solid state, but bipy. 2 IBr crystallizes in a cis conformation. Previously, it had been found that uncomplexed $2,2^{\prime}$ bipyridine crystallizes as a planar molecule with the two nitrogen atoms trans to one another (Merritt \&

Schroeder, 1956). Structural studies have also been done on the ICl and IBr adducts to pyridine (Hassel \& Romming, 1956; Dahl, Hassel \& Sky, 1967) showing the N-I-X bonding to be linear. This study was undertaken to compare the detailed geometry of bipy. 2 ICl , $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} .2 \mathrm{ICl}$, and bipy. $2 \mathrm{IBr}, \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} .2 \mathrm{IBr}$.

Experimental

Sample preparation

Both the ICl and IBr adducts are prepared as fine powders by slowly mixing dilute CCl_{4} solutions of 2, 2^{\prime}-bipyridine and ICl or IBr (Popov \& Pflaum, 1957; Yagi, Popov \& Person, 1967). Crystals of both compounds can be grown by sublimation on to a cold
finger; bipy. 2 ICl sublimes at approximately $90^{\circ} \mathrm{C}$, bipy. $2 \mathrm{IBr}, 10^{\circ}$ lower. Both compounds decompose on standing, bipy. 2 IBr more rapıdly; however, decomposition can be prevented by coating the crystals with a thin layer of halocarbon grease (Kel-F).

Unit cell and space group

Crystallographic data for the two compounds are given in Table 1. Unit cell and space-group data were obtained from Weissenberg and precession photographs and from 122θ values measured on a Picker FACS-I diffractometer with a graphite monochromator using Mo $K \alpha$ radiation ($\lambda=0.71069 \AA$).

Table 1. Crystallographic data

System
a
b
c
β
Absences

2,2'-Bipyridine. 2 ICl Monoclinic 11.833 (7) \AA $12 \cdot 427$ (7) 10.163 (5) $101.76(3)^{\circ}$

$$
h 0 l, h+l=2 n+1
$$

$$
0 k 0, k=2 n+1
$$

Space group $\quad P 2_{1} / n$

Z	4
d_{x}	$2 \cdot 18 \mathrm{~g} \mathrm{~cm}^{-3}$
d_{m}	$2 \cdot 16(2)$
μ, Mo $K \alpha$	$46.9 \mathrm{~cm}^{-1}$

Crystal size
$0.30 \times 0.20 \times 0.15 \mathrm{~mm}$
2,2'-Bipyridine. 2 IBr
Orthorhombic
$12.971(4) \AA$
11.163 (4)
$10.387(4)$

$h 0 l, h+l=2 n+1$
$h k 0, h=2 n+1$
$0 k l, k+l=2 n+1$
Pnna
4
$2.52 \mathrm{~g} \mathrm{~cm}^{-3}$
$2.49(2)$
$98.4 \mathrm{~cm}^{-1}$

Oipyridine. 21 Br 12.971 (4) \AA
$11 \cdot 163$ (4)
$10 \cdot 387$ (4)

$$
h l, h+l=2 n+1
$$

$h k 0, h=2 n+1$

Pnna
4
$2.52 \mathrm{~g} \mathrm{~cm}^{-3}$
$8.4 \mathrm{~cm}^{-1}$
$0.15 \times 0.15 \times 0.33 \mathrm{~mm}$

For both compounds systematic extinctions determined the space group uniquely. Densities were measured by flotation in a mixture of CCl_{4} and CHBr_{3}.

Intensity data

Three-dimensional intensity data for each crystal were collected with a Picker FACS-I diffractometer with Mo $K \alpha$ radiation and a graphite monochromator.

Fig. 1. A molecule of $2,2^{\prime}$-bipyridine. 2 ICl . The iodine and chlorine atoms are represented by thermal ellipsoids scaled to 50% probability density. The dihedral angle between the two pyridine rings is $88 \cdot 6^{\circ}$ and $\mathrm{I}(1) \cdots \mathrm{I}(2)$ is $4.34 \AA$.

Table 2. Atomic parameters for 2,2'-bipyridine. 2 ICl and $2,2^{\prime}$-bipyridine. 2 IBr
Fractional atomic coordinates $\left(\times 10^{4}\right)$ and temperature factor parameters ($\times 10^{4}$) for the iodine, chlorine, and bromine atoms in the expression $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k l\right)\right]$. Isotropic temperature parameters for the nitrogen and carbon atoms are listed in \AA^{2}. Standard deviations are given in parentheses.
2,2'-Bipyridine. 2 ICl

			y		z	β_{11}	β_{22}	β_{22}	β_{12}	β_{13}	
	I(1)	(1)	1215		1670 (1)) 86 (1)	70 (1)	103 (1)	-7 (1)	12 (1)	
	I(2)	(1)	4563		2908 (1)) 91 (1)	66 (1)	119 (1)	4 (1)	37 (1)	
	$\mathrm{Cl}(1)$	(2)	181		1822 (3)	95(3)	102 (3)	219 (5)	-20 (2)	34 (3)	
	$\mathrm{Cl}(2)$	(2)	5939		1483 (3)) 125 (3)	90 (2)	181 (4)	30 (2)	55 (3)	
	x	y			z	B		x	y	z	B
$\mathrm{N}(1)$	2071 (6)	2178			(7)	$4 \cdot 22$ (15)	N (2)	1683 (6)	3216 (6)	4288 (7)	$4 \cdot 43$ (16)
$\mathrm{C}(1)$	2727 (7)	2687			3 (8)	$3 \cdot 83$ (18)	C(6)	2431 (8)	2512 (7)	3929 (7)	$3 \cdot 84$ (18)
$\mathrm{C}(2)$	3640 (8)	3329			1 (9)	$2 \cdot 64$ (21)	C(7)	2893 (8)	1665 (8)	4719 (10)	5.24 (23)
$\mathrm{C}(3)$	3886 (9)	3462			6 (10)	$5 \cdot 31$ (23)	C (8)	2568 (9)	1548 (9)	5975 (10)	$5 \cdot 59$ (24)
$\mathrm{C}(4)$	3221 (9)	2948			5 (10)	5.53 (23)	C(9)	1818 (9)	2251 (8)	6349 (10)	$5 \cdot 28$ (23)
C(5)	2322 (8)	2279			9 (10)	$5 \cdot 25$ (22)	$\mathrm{C}(10)$	1359 (8)	3079 (8)	5520 (10)	$5 \cdot 08$ (22)

2,2'-Bipyridine. 2 IBr

	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
I	457 (1)	668 (1)	2539 (1)	61 (1)	58 (1)	92 (1)	-2 (1)	8 (1)	0 (1)
Br	-982 (2)	-563 (2)	1454 (2)	75 (2)	12 (2)	165 (3)	-30 (2)	-6 (2)	-18(3)
			x	y		z	B		
		N	1803 (9)	1765 (12)		3721 (13)	$3 \cdot 78$ (29)		
		C(1)	2593 (12)	2358 (16)		3215 (15)	$3 \cdot 74$ (34)		
		C(2)	3455 (14)	2692 (18)		3932 (20)	$5 \cdot 70$ (49)		
		C(3)	3457 (14)	2397 (18)		5227 (19)	$5 \cdot 97$ (47)		
		C(4)	2634 (14)	1768 (17)		5768 (18)	5.09 (45)		
		C(5)	1807 (12)	1460 (16)		4989 (19)	$4 \cdot 67$ (42)		

$\theta-2 \theta$ scans were used to collect 1302 observed reflections for bipy. 2 ICl and 555 for bipy. 2 IBr . A reflection was considered unobserved if the intensity was less than twice its estimated standard deviation.

Structure amplitudes were calculated in the usual way. For both compounds the variance in F^{2} was estimated by the expression

$$
\begin{aligned}
v\left(F^{2}\right)=\sigma\left(F^{2}\right)^{2}= & (1 / \mathrm{Lp})^{2}\left\{C+0.825+\left(t_{c} / 2 t_{b}\right)^{2}\left(B_{1}+B_{2}\right.\right. \\
& \left.+1.65)+(0.05 C)^{2}+\left[0.05\left(B_{1}+B_{2}\right)\right]^{2}\right\}
\end{aligned}
$$

where Lp is the Lorentz-polarization factor, C is the total integrated count obtained in time t_{c}, and B_{1} and B_{2} are the two background counts each obtained in time i_{b}. The intensities were corrected for absorption by means of the GONO 9 program (Hamilton, 1956); transmission coefficients for bipy. 2 ICl ranged from 0.40 to 0.60 , and for bipy. 2 IBr from 0.26 to 0.37 .

Structure determination and refinement

Both structures were solved by standard heavy-atom methods and were refined by least-squares methods with the program $B U L S$, which is a local variation of the ORFLS program (Busing, Martin \& Levy, 1962). The function minimized was $\sum w\left(F_{o}-F_{c}\right)^{2}$. Weights were taken as $w=4 F_{o}^{2} / v\left(F_{o}^{2}\right)$; this is the reciprocal variance in $|F|_{0}$.

2,2'-Bipyridine. 2 ICl

${ }^{\text {c- }}$ The two independent iodine atoms and one of the chlorine atoms were located from a three-dimensional Patterson function. The coordinates and isotropic temperature factor parameters of these atoms were refined by two cycles of least-squares adjustment to give $R=$ $19.8 \%, R_{w}=29.0 \%$ based on observed $|F|$ values. Only reflections with $|F|^{2}$ values greater than $2 \sigma\left(F^{2}\right)$ were included in the refinement. An electron-density difference map clearly showed the remaining chlorine and carbon atoms. Further cycles of refinement with the eventual inclusion of anisotropic thermal parameters for the iodine and chlorine atoms converged to $R=2 \cdot 9 \%, R_{w}=3 \cdot 5 \%$. * The structure was confirmed by a final difference synthesis.

2,2'-Bipyridine. 2 IBr

With four formula units in the space group Pnna, the centers of the molecules of bipy. 2 IBr must lie on either centers of inversion or twofold axes. From a three-dimensional Patterson function the independent iodine and bromine atoms were located about the twofold axes. The coordinates and isotropic thermal parameters of these two atoms were refined by two cycles of least-squares to yield $R=14.9 \%, R_{w}=21.7 \%$,

[^0]based on observed $|F|$ values. From a subsequent difference map the remaining carbon and nitrogen atoms were located. Further cycles of refinement, eventually with the inclusion of anisotropic thermal parameters for the iodine and bromine atoms converged to a final $R=$ $4.0 \%, R_{w}=4.9 \%$.* A final difference map revealed only residual density $\left(1 \cdot 1\right.$ e $\left.\AA^{-3}\right)$ around the iodine atom.

Final positional and thermal parameters for both structures with their estimated standard deviations are listed in Table 2.

Fig. 2. A molecule of $2,2^{\prime}$-bipyridine. 2 IBr . The center of the molecule lies on a twofold axis of rotation. The dihedral angle between the two pyridine rings is only 52.9° and the I $\cdots I^{\prime}$ separation has become a short $4.09 \AA$.

Fig. 3. The unit-cell contents of $2,2^{\prime}$-bipyridine. 2 ICl . All intermolecular contacts are longer than the van der Waals distances.

Discussion

The molecules of bipy. 2 ICl and bipy. 2 IBr are shown in Figs. 1 and 2, respectively, together with the nomenclature and bond lengths. Packing diagrams are presented in Figs. 3 and 4.

The bond distances and angles in the two compounds are similar to those found in 2,2'-bipyridine (Merritt \& Schroeder, 1956), pyridine. ICl (Hassel \& Rømming, 1956), pyridine. IBr (Dahl, Hassel \& Sky, 1967), and pentamethylenetetrazole.ICl (Baenziger, Nelson, Tulinsky, Bloor \& Popov, 1967). Tables 3 and 4 contain

Table 3. Bond lengths and angles in $2,2^{\prime}$-bipyridine. 2ICl See Fig. 1 for numbering.

$\mathrm{I}(1)-\mathrm{Cl}(1)$	$2 \cdot 479(4) \AA$
$\mathrm{I}(1)-\mathrm{N}(1)$	$2 \cdot 336(7)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.35(1)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.37(1)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 40(1)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1 \cdot 39(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1 \cdot 40(1)$
$\mathrm{C}(5)-\mathrm{N}(1)$	$1 \cdot 35(1)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1 \cdot 50(1)$
$\mathrm{I}(2)-\mathrm{Cl}(2)$	$2 \cdot 477(11)$
$\mathrm{N}(2)-\mathrm{I}(2)$	$2 \cdot 344(7)$
$\mathrm{N}(2)-\mathrm{C}(6)$	$1.35(1)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1 \cdot 37(1)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1 \cdot 41(1)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1 \cdot 36(1)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.37(1)$
$\mathrm{C}(10)-\mathrm{N}(2)$	$1 \cdot 39(1)$
$\mathrm{I}(1)-\mathrm{I}(2)$	$4.340(3)$

$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$122 \cdot 1(9)^{\circ}$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$118 \cdot 6(10)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$120 \cdot 2(10)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$118 \cdot 2(10)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$	$121 \cdot 1(10)$
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1)$	$119 \cdot 8(8)$
$\mathrm{N}(1)-\mathrm{I}(1)-\mathrm{Cl}(1)$	$179 \cdot 6(3)$
$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	$123 \cdot 1(9)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$117 \cdot 4(10)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$120 \cdot 1(11)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$120 \cdot 8(10)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(2)$	$119 \cdot 8(9)$
$\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(6)$	$118 \cdot 8(9)$
$\mathrm{N}(2)-\mathrm{I}(2)-\mathrm{Cl}(2)$	$176 \cdot 2(2)$

$\mathrm{C}(10)-\mathrm{N}(2) \quad 1.39$ (1)
$1 \cdot 340(3)$

Fig. 4. The unit-cell contents of $2,2^{\prime}$-bipyridine. 2 IBr . All intermolecular contacts are longer than the van der Waals distances.
the interatomic bond distances and angles of interest for the two compounds.

Table 4. Bond lengths and angles in $2,2^{\prime}$-bipyridine. 2 IBr See Fig. 2 for numbering.

$\mathrm{I}-\mathrm{Br}$	$2.577(2) \AA$	$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)$	$122.7(14)^{\circ}$
$\mathrm{I}-\mathrm{N}$	$2.46(1)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$117.2(18)$
$\mathrm{N}-\mathrm{C}(1)$	$1.33(2)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$120.7(19)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.40(2)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$112.7(18)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.38(3)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}$	$120.4(16)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.40(2)$	$\mathrm{C}(5)-\mathrm{N}-\mathrm{C}(1)$	$120.3(41)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.39(2)$	$\mathrm{N}-\mathrm{I}-\mathrm{Br}$	$175.9(3)$
$\mathrm{C}(5)-\mathrm{N}$	$1.36(2)$		
$\mathrm{C}(1)-\mathrm{C}\left(1^{\prime}\right)$	$1.52(3)$		
$\mathrm{I} \cdots \cdots \mathrm{I}^{\prime}$	$4.091(3)$		

The $\mathrm{N}-\mathrm{I}-\mathrm{Cl}$ and $\mathrm{N}-\mathrm{I}-\mathrm{Br}$ groups are most readily described as three-center four-electron bonds, containing one pair of bonding and one pair of nonbonding electrons (Rundle, 1962). This three-center four-electron bonding also occurs, for example, in α - and $\beta-\mathrm{ICl}$ (Boswijk, van der Heide, Vos \& Wiebenga, 1956; Carpenter \& Richards, 1962), in IBr (Swink \& Carpenter, 1968), and in the ICl_{2}^{-}and IBr_{2}^{-}anions (Soled \& Carpenter, $1973 a, b$). When atoms $\mathrm{X}-\mathrm{Y}-\mathrm{Z}$ are linked by a three-center four-electron bond, bonds $\mathrm{X}-\mathrm{Y}$ and $\mathrm{Y}-\mathrm{Z}$ are weaker and longer than normal electron-pair bonds. If the bonding electron density shifts toward atom X , bond $\mathrm{X}-\mathrm{Y}$ becomes weaker and longer, whereas bond $\mathrm{Y}-\mathrm{Z}$ becomes stronger and shorter. In bipy. 2 ICl the $\mathrm{N}-\mathrm{I}$ bond length $2.34 \AA$ is $0.31 \AA$ longer than a nominal single bond, and the I-Cl bond length $2.48 \AA$ is $0.16 \AA$ longer than a nominal single bond. [Nominal bond lengths are sums of Pauling's (1960) single-bond covalent radii]. In bipy. 2 IBr the $\mathrm{N}-\mathrm{I}$ bond length $2.46 \AA$ is $0.43 \AA$ longer than a single bond, and the $\mathrm{I}-\mathrm{Br}$ bond length $2.58 \AA$ is $0.11 \AA$ longer than a single bond. This indicates some shift, relative to the ICl adduct, of bonding electrons toward the nitrogen atom, as is consistent with the electronegativity of nitrogen being greater than that of bromine.

The individual pyridine rings of both bipy. 2 ICl and bipy. 2 IBr are nearly planar. Least-squares planes through the pyridine rings of both complexes, together with the deviations of all the atoms from these planes, can be found in Table 5. The iodine atoms in bipy. 2 ICl are $0.3 \AA$ closer to the ring plane than the iodine atoms in bipy. 2 IBr . This is consistent with Mössbauer measurements, which indicate a higher percentage of π-bond character for the iodine atoms in the ICl adduct $(7 \%$ vs. 4%). Furthermore, in the ICl adduct the iodine atoms are twisted out of the plane of the ring atoms toward one another, whereas in the IBr adduct, the iodine atoms are twisted away from one another.

Unlike 2,2'-bipyridine (Merritt \& Schroeder, 1956) or biphenyl (Trotter, 1961; Hargreaves \& Rizvi, 1962), which are both planar in the solid state, the pyridine rings in both bipy. 2 ICl and bipy. 2 IBr are significantly twisted with respect to one another. Wynter et al. (1969) suggested that the asymmetry parameter derived

Table 5. Least-squares planes in $2,2^{\prime}$-bipyridine. 2 ICl and $2,2^{\prime}$-bipyridine. 2 IBr

2,2'-Bipyridine. 21 Br
Plane through, $\mathrm{N}, \mathrm{C}(1)-\mathrm{C}(5)$
$-5.776 x+9.680 y+2.319 z=1.529$
Distances of atoms from this plane

N	$0.0016 \AA$
$\mathrm{C}(1)$	0.0014
$\mathrm{C}(2)$	-0.0069
$\mathrm{C}(3)$	0.0067
$\mathrm{C}(4)$	-0.0020
$\mathrm{C}(5)$	-0.0020

r.m.s. deviation $=0.0017 \AA$
$\begin{array}{ll}\mathrm{I} & -0.56 \\ \mathrm{Br} & -1.17\end{array}$

2,2'-Bipyridine. 2 ICl
$\begin{array}{ll}\text { Plane through } \mathrm{N}(1), \mathrm{C}(1)-\mathrm{C}(5) & \text { Plane through } \mathrm{N}(2), \mathrm{C}(6)-\mathrm{C}(10) \\ -7 \cdot 029 x+9 \cdot 784 y-0.411 z=0.6049 & 8 \cdot 170 x+7 \cdot 219 y+2 \cdot 858 z=4.920\end{array}$
Distances of atoms from these planes

$\mathrm{N}(1)$	$0.0079 \AA$
$\mathrm{C}(1)$	0.0010
$\mathrm{C}(2)$	-0.0072
$\mathrm{C}(3)$	0.0021
$\mathrm{C}(4)$	0.013
$\mathrm{C}(5)$	-0.019
s. deviation $=0.0042 \AA$	
$\mathrm{I}(1)$	0.23
$\mathrm{Cl}(1)$	0.45

$\mathrm{N}(2)$	$0.0022 \AA$
$\mathrm{C}(6)$	0.0019
$\mathrm{C}(7)$	-0.0066
$\mathrm{C}(8)$	0.0033
$\mathrm{C}(9)$	0.050
$\mathrm{C}(10)$	-0.0092

1.m.s. deviation $=0.0022 \AA$

$$
\begin{array}{ll}
l(1) & -0.24 \\
\mathrm{Cl}(2) & -0.61
\end{array}
$$

from Mössbauer spectroscopic measurements indicates that bipy. 2 ICl exists in a trans conformation and bipy. 2 IBr in a cis conformation. However, these conformations are sterically impossible in these compounds. A cis conformation would place the terminal halogen atoms in extremely close proximity, while in a trans conformation each iodine atom and its nearest carbon (and hydrogen) atom on the attached ring would be unreasonably close. (For example, in the case of an exactly trans bipy.2IX compound with all ring C-C bond distances $1 \cdot 39 \AA$ and with an N-I separation of $2 \cdot 40 \AA$, the I \cdots C separation would only be $2.67 \AA$.)

Indeed, in bipy. 2 ICl the best least-squares planes through the two rings are at 88.6° from the cis conformation, and there are no conspicuously short intraor intermolecular distances. However, the intramolecular iodine-iodine distance of $4 \cdot 34 \AA$ is just the normal van der Waals separation. In bipy. 2 IBr , the twist from the cis conformation is only 52.9°, and the intramolecular iodine-iodine separation is only $4.09 \AA$. It appears, then, that in both cases the two iodine atoms are weakly drawn together with a resultant decrease in the dihedral angle between the two pyridine rings. Whether the greater effect in the IBr adduct arises from intrinsic factors or from extrinsic packing considerations is not obvious. This type of interaction also occurs in KICl_{2} (Soled \& Carpenter, 1973a) which has pairs of parallel ICl_{2}^{-}ions separated by only $4 \cdot 15 \AA$.

This work was supported in part by the Material Science Program at Brown University, funded by the National Science Foundation.

References

Baenziger, N. C., Nelson, A., Tulinsky, A., Bloor, J. \& Popov, A. I. (1967). J. Amer. Chem. Soc. 89, 6463-6465.
Boswijk, K. H., van der Heide, J., Vos, A. \& Wiebenga, E. H. (1956). Acta Cryst. 9, 274-277.

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Carpenter, G. B. \& Richards, S. M. (1962). Acta Cryst. 15, 360-364.
Dahl, T., Hassel, O. \& Sky, K. (1967). Acta Chem. Scand. 21, 592-593.
Hamilton, W. C. (1956). Acta Cryst. 10, 629-634.
Hargreaves, A. \& Rizvi, S. H. (1962). Acta Cryst. 15, 365-373.
Hassel, O. \& Rømming, C. (1956). Acta Chem. Scand. 10, 696.

Merritt, L. L. \& Schroeder, E. D. (1956). Acta Cryst. 9, 801-804.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., p. 224. Ithaca: Cornell Univ. Press.
Popov, A. I. \& Pflaum, R. T. (1957). J. Amer. Chem. Soc. 79, 570-572.
Rundle, R. E. (1962). Record Chem. Prog. 23, 206-215.
Soled, S. L. \& Carpenter, G. B. (1973a). Acta Cryst. B 29, 2104-2109.
Soled, S. L. \& Carpenter, G. B. (1973b). Acta Cryst. B29, 2556-2559.
Swink, L. N. \& Carpenter, G. B. (1968). Acta Cryst. 24, 429-433.
Trotter, J. (1961). Acta Cryst. 14, 1135-1140.
Wynter, C. I., Hill, J., Bledsoe, W., Shenoy, G. K. \& Ruby, S. L. (1969). J. Chem. Phys. 50, 3872-3874.
Yagi, Y., Popov, A. \& Person, W. (1967). J. Phys. Chem. 71, 2439-2444.

[^0]: * The final F_{o}, F_{c} tables have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30296 (10 pp). Copies may be obtained through the Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH 11 NZ , England.

